Puzzle Similarity: A Perceptually-guided No-Reference Metric for Artifact
Detection in 3D Scene Reconstructions

Supplementary Material

Summary In this supplementary material, we include ex-
tra details on the implementation of PuzzleSim, with exem-
plary code in Pytorch, as well as extra details on our choice
of model backbone for the metric and extended qualitative
results with comparisons with all tested metrics. Addition-
ally, we include extra information on our recursive auto-
matic inpainting application.

1. Puzzle Similarity Implementation Details

Recall from Section 3 that we can compute the quality map
based on an outer product.

ﬁg(Il:N) c RNXHgXW@XCz
]}Z(ILN) — flatten (]A:g(ILN)) e RNH@W@XC[
€ RHeWe (D

S¢(Z) = rowmax fg(Ié}N) ® fg(I)

€ RNH W, xHyW,

Computing this outer product naively would require sub-
stantial amounts of memory, as the resulting matrix be-
fore taking the maximum over rows has a dimensional-
ity of (NHW,HW), thus NH?W? elements. N =
100 reference images of size 128 x 128 would result in
26, 843, 545, 600 elements, requiring ~ 100GB memory for
32-bit floating point numbers. We observed that this prob-
lem is similar to flash attention [1] and derived from it a
memory-efficient implementation.

We leverage the fact that we are taking the maximum
along rows of size (NHW). Knowing this, we can com-
pute partial results by looping over either N, H, or W
and aggregating the current maximum for each element,
which reduces the memory footprint. At the same time, we
take advantage of the GPU’s cache hierarchy by looping in
blocks. This gives an additional speedup without loss of
generality. With this approach, we can cut the biggest ma-
trix to (NbW, HW) in case we choose to aggregate along
the height dimension while running over b-sized blocks with
b << H. The final algorithm is detailed below.

def puzzle_similarity(F, img)
W
F: base model
img: image to test

o

layer_similarities = []

ref_feats = compute_normalized_features (F, refs)
features = compute_normalized_features(F, img)
for layer in layers:

refs = ref_ feats[layer]

img_ = feats[layer].squeeze ()
N, C, H, W = refs.shape

candidates = []
# factor over h, the di
block_size = 4
for h in range (0, H, block_size):
sim = torch.einsum(
'cHW, nchw—->nHWhw',
img_, refs[:, :, h:h+block_size, :]

n that you max over

)
C_WH = (
sim
# what was rows In sim is n

# a r in sim 1

.reshape (N, H *

W, -1)
.max (dim=-1) #
.values # ge
.max (dim=0

.values
)
candidates.append (c_WH)

sim_map = (
torch.stack (candidates, dim=0)
.max (dim=0) # distribute max over ref.H
.values
.view (H, W) # reshape to spatial map
)
sim_map = upsample (sim_map * w[layer], img.shape)

layer_similarities.append(sim_map)

return sum(layer_similarities)

In our implementation, we use a block size of 4, which
reduces the matrix size to (N4W, HW), reducing memory
load to only ~ 3.5GB. This approach enables us to com-
pute PuzzleSim efficiently even on high-resolution images,
given that computing time is primarily dominated by mem-
ory fetches in our metric.

To see the impact of our blocked implementation, we
compare its runtime with the naive implementation. In Ta-
ble 1, we show the results for different image sizes and
number of reference images. After five warmup steps, we
measured the computation time in milliseconds, averaging
over 200 runs. The =+ indicates half the distance between
the 0.05 and 0.95 quantiles. We observe that the blocked
implementation appears more stable and scales better. The
experiment was performed on an NVIDIA GeForce GTX
3090 with 24GB of memory.

2. On the choice of backbone model

In Table 2 we summarize the differences we considered
when choosing our backbone. While VGG models achieve
higher performance on the ImageNet benchmark [2], model
size and computational complexity are problematic in ef-
ficiency terms for our metric. Furthermore, added model
capacity and improved classification performance did not
seem to substantially improve the alignment of our model



Table 1. Comparison of blocked and naive implementation across different numbers of references and image sizes in ms.

Image Size # References PuzzleSim (blocked) PuzzleSim (naive)
(240, 131) 25 3.841.95 2.211.36

(240, 131) 50 6.010.58 26.310.13

(240, 131) 75 14.710.16 4141917

(240, 131) 100 20.140.05 57.910.07

(480, 262) 25 5.610.29 4.51011

(480, 262) 50 15.310.08 12.710.09

(480, 262) 75 185.7+0.00 331.810.00
(480, 262) 100 299.210.00 499.110.00
(960, 524) 25 56.8+0.07 97.240.74

(960, 524) 50 321.3+0.00 727.210.00
(960, 524) 75 2653.340.00 5421.840.00
(960, 524) 100 5799.140.00 15353.640.00
(1920, 1048) 25 754.419.00 Out-of-memory
(1920, 1048) 50 1516.740.00 Out-of-memory
(1920, 1048) 75 31104.0+0.00 Out-of-memory
(1920, 1048) 100 69807.40.00 Out-of-memory

with human perception; rather hindering it. AlexNet and
SqueezeNet offer much greater speed and lower memory
consumption while also producing slightly preferable maps
in our empirical evaluations.

Model #Parms Acc. Efficiency Mem.
VGG-19 144M Low High
VGG-16 138M Low High
AlexNet 60M Mid Mid Mid

SqueeseNet [N Mid | High' ' Kow

Table 2. Pre-trained models considered for our backbone. Accu-
racy refers to their relative performance on the ImageNet bench-
mark [2].

3. Dataset Collection Experiment Details

The experiment was run on a DELL U2718Q monitor with
a consistent display setting across all participants, keeping
a constant viewing distance around 70 cm under controlled
lighting conditions. We recruited 23 participants (10 male,
12 female, 1 undisclosed) with a mean age of 24, all pos-
sessing normal or corrected to normal visual acuity. All test
subjects were compensated for their time. We will release
the dataset upon acceptance.

4. Extended Metric Validation Results

We include extensive qualitative results on all tested metrics
in Figure | for more examples. Our metric correlates best
with human assessment, even when compared with direct,
full-reference metrics.

5. Automatic Recursive Inpanting Formulation
Details

In this section, we provide extended details on the mathe-
matical framework of the inpainting method. Upon sam-
pling threshold candidates 71.y we threshold the initial
quality map Q with each candidate to obtain the binary map
M; as shown in Eq. 7. We inpaint the current image with
each candidate mask and assess their quality with our Puz-
zleSim metric:

Z; = Inpaint(Z, M;)

: Z,M @
Q; = PuzzleSim(Z;)



Il Bonsai Flowers

Rendering

Full-reference

HLIP

L2 L1

SSIM

LPIPS

No-reference

CNNIQA || FovVideoVDP

PIQE

Puzzle (ours)

Human

Figure 1. More elaborate comparison to all other metrics. For LPIPS we chose VGG as a backbone as it is the most popular choice.



To determine the candidate quality, we compute the average
change in the quality §; of the inpainted regions:

HZ WI
= 3 3
h=1w=1
L QANE g (hw)
52’ _ A‘h,w _ 0(haw) M.h,w 3
IR
h=1w=1
Quality improvement of the inpainted area
\i = |M;|»

where |M;| indicates the number of inpainted pixels and
A; is a regularization term penalizing bigger masks with
strength p that we empirically chose to be 4. Once the initial
threshold 7, is found, we iteratively find a new threshold in
the interval 7, +a ! std(Q, ), where « is a hyperparameter
that we set to 10 for all examples. By including the stan-
dard deviation, we dynamically adapt to the distribution of
quality scores. As the scores become uniform, the interval
becomes narrower, facilitating convergence.

References

[1] Tri Dao, View Profile, Daniel Y. Fu, View Profile, Stefano
Ermon, View Profile, Atri Rudra, View Profile, Christopher
Ré, and View Profile. Flashattention. Proceedings of the 36th
International Conference on Neural Information Processing
Systems, pages 16344—16359, 2022. 1

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li
Fei-Fei. ImageNet Large Scale Visual Recognition Challenge,
2015. arXiv:1409.0575 [cs]. 1,2

2

—



	. Puzzle Similarity Implementation Details
	. On the choice of backbone model
	. Dataset Collection Experiment Details
	. Extended Metric Validation Results
	. Automatic Recursive Inpanting Formulation Details

