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Abstract
Graph contrastive learning has gained significant attention for learning effective representations from unlabeled graph data.
In this paper reproduction, we replicate and evaluate the methodology proposed by the PolyGCL pipeline, which uses
spectral polynomial graph filters to achieve contrastive learning by learning a linear combination of a high-pass and low-pass
view. The original paper studies the necessity of introducing high-pass information when a graph presents a high degree of
heterophily, that is, when nodes connected by an edge are likely to have different labels, which poses a challenge for current
unsupervised learning approaches. Through this replication study, we assess the reproducibility and robustness of the method
using both their open-source code and our own implementation, discuss implementation details, and provide insights into
the practical considerations and challenges of applying self-supervised contrastive learning.

1 Introduction

This project addresses the problem of self-supervised graph
representation learning when dealing with both heterophilic
and homophilic graphs. Heterophily is the tendency in graph
data to have edges between nodes that do not share the
same labels. The inverse tendency is called homophily.
Existing methods rely on low-pass graph convolutional filters
which underperform when the homophily assumption is not
met, due to the smoothing effect on node features. Graph
contrastive learning has become a predominant approach
to self-supervised learning on graphs, which entails the
training of an encoder to be contrastive with respect to data
that have statistical dependencies and those that do not,
by producing representations that are easily distinguishable
when comparing positive and negative examples. With this
work we assess the reproducibility of PolyGCL [1], in which
this problem is approached from a spectral point of view by
learning both a high-pass and low-pass view and coefficients
weighing the two contributions to produce a final embedding.
To do that, a contrastive objective function is devised.
Initially, the code was not open-sourced and we implemented
a first model based solely on the explanations contained in
the paper. In a second phase, after the code was published,
we compared our code with the original implementation and
adapted it in order to produce fair comparisons. For the
most part, we were able to reproduce the claimed results
on a series of real-world and synthetic datasets, spanning
a wide range of heterophily and homophily degrees. We
start by providing a brief but necessary background on
the topic, followed by the related work and methodology
details of PolyGCL. We then discuss our implementation,
the difficulties we encountered, and the differences between
the implementation and the method described in the paper.
Finally, we report and discuss the obtained results.

2 Preliminary

We will consider attributed graphs G = (X , E) of size N
where X = {(i, xi)}i=1:N is the set of nodes and their
attribute vector, and E = {(i, j)} is the set of edges, which
we assume not to have any attributes. Although nodes
naturally do not take any order, it is useful to consider
X ∈ RN×d to be the matrix of ordered node attributes. We
will then define Z = F (X,A) the output of a graph neural
network F , given the node attribute matrix and the adjacency
matrix A, which is an ordered representation of E , such that
Aij = 1↔ (i, j) ∈ E .

Graph neural networks (GNNs) are permutation
equivariant functions, i.e. functions F such that
F (PX,PAPT ) = PF (X,A) for any permutation matrix
P , that computes a meaningful latent representation of
node attributes. To do that they internally use permutation
invariant functions zi = ϕ(xi, XN (i)) to compute the
representation of node i given the neighbouring features
XN (i) [2]. GNNs can be divided into spatial ([3] [4] [5])
and spectral ([6] [7] [8]) GNNs, depending on whether
they perform convolutions in the spatial or spectral domain.
This project focuses on spectral GNNs, which are based
on the spectrum of the Laplacian matrix. The Laplacian of
a graph is defined as L = D −A, where D = diag(A1)
is a diagonal matrix with the degrees of the nodes. The
normalized Laplacian is defined as L̃ = I −D− 1
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and is diagonizable as L̃ = UΛUT , where U is the Fourier
basis of the graph and Λ = diag([λ0, . . . , λN−1]). A
graph signal x ∈ RN of graph G can be transformed in
the graph Fourier space by x̂ = UTx, while the inverse
transform is defined as x = Ux̂ [9]. A graph can then be
filtered by a filter gθ as y = Ug(Λ)UTx for a filter gθ(Λ).
ChebNet from [6] approximates gθ by a truncated expansion
gθ(Λ) =

∑K−1
k=0 θkTk(Λ̃), where Λ̃ = 2Λ/λmax − I , Tk

is the Chebyshev polynomial of order k and θk are the
Chebyshev coefficients. The filtering operation is then
defined as:
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y = gθ(L)x =

K−1∑
k=0

θkTk(L̃)x (1)

where Tk(L̃) is the Chebyshev polynomial of k-th order
evaluated on the scaled Laplacian L̃ = 2L/λmax − I .
The Chebyshev polynomials can be recursively defined
as Tk(x) = 2xTk−1(x)− Tk−2(x) with T0(x) = 1 and
T1(x) = x. Then the overall structure of ChebNet is:

Z =

K∑
k=0

P (k)Θ(k)

P (1) = X

P (2) = L̃

P (k) = 2L̃P (k−1) − P (k−2)

(2)

with learnable parameters Θ(k).
Contrastive methods are a common approach for

unsupervised learning, where representations are learned
by training an encoder to be contrastive. This involves
distinguishing between representations that are dependent on
each other and those that are not. In practice, a contrastive
approach may involve training an encoder to increase the
similarity score for pairs of real inputs and decrease the score
for pairs involving fake inputs. By doing so, the encoder
learns to produce similar embeddings for related inputs while
ensuring that unrelated inputs are mapped to distant regions
in the embedding space [10]. This framework is particularly
useful in graph contrastive learning, where the objective
is to learn robust node or graph-level representations by
contrasting nodes or subgraphs that share structural or
attribute similarities with those that do not.

3 Related works
Deep Graph Infomax (DGI) [10] introduces an objective for
unsupervised graph representation learning based on mutual
information, where mutual information contained in a global
representation and local representations of the graph has
to be maximized. The objective is to learn an encoder E
producing node embeddings Z = E(X,A) such that they
capture global information of the entire graph. To do that,
a discriminator D should be able to differentiate between
local representations zi and corrupted representations (not
belonging to the graph) z̃i when compared to a global
summary of the graph s = R(Z). Because the encoder is
a graph convolutional network that aggregates features of
neighbouring nodes (a patch of the graph) into the features
of the receiving nodes, each node contains part of the global
information. This idea is also used in PolyGCL.

ChebNetII introduced in [11] was dealing with the unex-
pected empirical results showing ChebNet [6] performing
worse than GCN [5], which is a simpler version of ChebNet,
where only the first two Chebyshev polynomials are used.
ChebNet’s theoretical higher expressiveness is not reached in
practice because illegal coefficients are learned by ChebNet
approximating analytic filter functions, resulting in degraded
performance. The authors propose a novel filtering based on
Chebyshev interpolation, improving the original Chebyshev
polynomial approximation, which is also used in PolyGCL.

4 Methodology
The graph convolutional layer in the PolyGCL method
is an extension of the ChebNet filtering presented in
Formula 1 in which polynomial filters are learned on
two separate high-pass and low-pass channels, generating
two distinct spectral views. Following [11], the graph
convolution is approximated by Chebyshev polynomials
with interpolation as base polynomials. Given a continuous
filter function g(λ̂), let xj = cos

(
j+1/2
K+1 π

)
, j = 0, . . . ,K

denote the Chebyshev nodes for TK+1. The filter value
g(xj) at the Chebyshev node xj is re-parameterised as a
learnable parameter γj and the overall filtering operation can
be defined as:

Z =

K∑
k=0

2

K + 1

K∑
j=0

γjTk(xj)︸ ︷︷ ︸
wk

Tk(L̃)X
(3)

Note that in this formulation, feature propagation and
transformation are decoupled and features X can be first
transformed by an MLP as X̃ = fθ(X) [11].

To achieve a low pass and a high pass filtering, a prefix
sum and a prefix difference are applied on γj respectively.
The result is that in the former case, the learnable parameters
γj increment as j increases and in the latter case the value
decreases. Let γ0 be some initial value. Then let γH

i be the
resulting prefix sum up to j = i and γL

i be the result of the
prefix difference up to j = i. That is:

γH
i =

i∑
j=0

γj , γL
i = γ0 −

i∑
j=1

γj , i = 1, . . . ,K (4)

As a consequence, γH
i ≤ γH

i+1 and γL
i ≥ γL

i+1, guarantee-
ing the high pass and low pass property of g(λ̂) we want to
approximate.

The encoders, providing the high pass and low pass views
can therefore be defined as follows:

ZL = EL(X,A) = fθ

(
K∑

k=0

wL
k Tk(L̃)X

)

ZH = EH(X,A) = fθ

(
K∑

k=0

wH
k Tk(L̃)X

) (5)

where wH
k is obtained by substituting γj with γH

j

in 2
K+1

∑K
j=0 γjTk(xj). Similarly, wL

k is obtained by
substituting with γL

j . Function fθ is an MLP with shared
weights between both views.

In order to train this architecture in an unsupervised
manner, we need an unsupervised objective function to
optimize. The two views are first combined linearly
as Z = α · ZL + β · ZH , with α and β being learnable
parameters. Following [10], contrastive learning is achieved
by maximizing mutual information between ”local patches”
and global summaries of the graph. Local patches are node
embeddings that depend on their neighborhood. Global
summaries are achieved with a global graph pooling
operation [12], which in this case is a simple mean
pooling g = mean(Z) = 1

N

∑N
i=0 zi for a graph of size
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N . To obtain negative examples, the input features X
are randomly shuffled, while the adjacency matrix is left
untouched, obtaining X̃ , and fed into the high pass and
low pass encoders, obtaining Z̃H and Z̃L. To score the
mutual information between node and graph representations,
a discriminator D is defined as D(zi, g) = σ

(
ziWgT

)
∈

(0, 1) with learnable parameters W ∈ Rd×d for embeddings
of size d. Finally, we can define the objective function as a
binary cross-entropy function to minimize:

LBCE = − 1

4N

N∑
i=1

logD(zi,L, g) + log(1−D(z̃i,L, g))+

logD(zi,H , g) + log(1−D(z̃i,H , g))
(6)

Given the above discussion and definitions, training
PolyGCL can be carried out by following the steps described
in Algorithm 1, given a maximum number of iterations and
having chosen the truncation length K.

Algorithm 1: PolyGCL Training
Data: Node features X , adjacency A
Result: Node encoders EL and EH
Initialize D, fθ, α, β, γi for i = 0 . . .K
for epoch = 1 . . . T do

Compute γH
i and γL

i

Compute wH
k and wL

k

X̃ ← shuffle(X)
ZL ← EL(X,A), ZH ← EH(X,A)
Z̃L ← EL(X̃, A), Z̃H ← EH(X̃, A)
Z ← αZL + βZH

g ← mean(Z)
loss← LBCE(g, ZL, ZH , Z̃L, Z̃H)
Optimize D, fθ, α, β, γi

end

5 Implementation
In this section, we will describe our implementation
of the paper’s methods and compare it to the authors’
code that was later made open source. We will further
outline the differences and inconsistencies between the two
implementations and the methods described in the paper.

5.1 Reproduction

The reproduction consisted of multiple modules:

• The high and low pass encoder E .
• The loss computation detailed in Eq. 6.
• Evaluation by running logistic regression on the

generated embeddings.
• The overall training algorithm, given in Algorithm 1

of their paper.
• The synthetic generation of the cSBM datasets.

Encoder: Our encoder was based on Pytorch Geometric’s
implementation of ChebNet*, which we adapted to
implement ChebNetII’s Chebyshev interpolation, which in
turn provides the base for PolyGCL’s graph convolution.
Following the paper, we utilized a single set of trainable

parameters γ1:K and initial value γ0 shared between the high
pass and low pass view of the encoder. To guarantee that the
values of the various γi remain positive, we apply a ReLU
activation on their learned values. In order to freely choose
the dimension onto which we apply the convolutions, we
initially encode the input features with a linear layer followed
by a dropout layer. We then apply the graph convolution
on the embedded features, apply another dropout, followed
by a batch normalization and a linear layer with non linear
activation. In a subsequent subsection, we will explore
the choice of specific hyperparameters, such as dropout
rates, learning rates, embedding dimension, and activation
functions.
Loss: The loss function was initially implemented by
explicitly computing Equation 6, which turned out to be
problematic. The discriminator, implemented as a bilinear
layer with sigmoid activation, when trained could produce
1.0 or 0.0 as outputs, as the numerical value of sigmoid can
quickly reach its upper and lower limit sufficiently close,
and evaluating log(0) or log(1− 1.0) would produce invalid
loss values. We considered adding a small value ϵ to any
logarithm to avoid the problem but ended up relying on
Pytorch’s built-in cross-entropy loss. For that, we provided
labels set to 1 for ZL and ZH , and labels set to 0 for Z̃L and
Z̃H .
Evaluation: Evaluating the quality of node representations
alone is not trivial. Following the experiments carried out
in the paper, we evaluate the quality of the representation
by assuming that if they are good, a simple linear
classifier should be able to have a high accuracy on them.
For this, we wrote a small Pytorch training loop for a
logistic regression model. Following [1], we use random
train/test/validation splits in ratios of 60/20/20. However,
we make an exception for the datasets roman empire,
amazon ratings, minesweeper, tolokers, and questions as
they were imbalanced in terms of labels distribution. This
led to biased classifiers that achieved high test accuracy
before even training the embedding. Using the provided
splits from PyTorch geometric solved the problem for
roman empire and amazon ratings. Following the authors,
we replaced accuracy with the more appropriate area under
the receiver operating characteristic curve (AUC-ROC) for
imbalanced classification for minesweeper, tolokers, and
questions. To optimize we used Adam and CrossEntropy
or BinaryCrossEntropy for multiclass and two class
datasets respectively. Early stopping was applied to prevent
overfitting.

At the end of the encoder’s training process we load
the best encoder model achieving the lowest unsupervised
loss again. We evaluate it with the post-evaluation script
provided by the authors. The code fits a logistic regression
model to 10 different train/test/validation splits to get an
uncertainty estimate. For a fair comparison, we compare our
implementations to the results of their evaluation script.
Training Algorithm: To reproduce all experiments we
wrote a dataset factory to load the various datasets from
torch_geometric.datasets and ogb. The training

∗https://pytorch-geometric.readthedocs.io/en/
latest/_modules/torch_geometric/nn/conv/cheb_conv.
html#ChebConv
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loop is a classical Pytorch training loop where we logged
α, β, γ1:K , and the logistic regression results to Weights
and Biases to track our experiments. We used Adam as our
optimizer.
Synthetic Dataset: To control the degree of
homophily/heterophily of a dataset the authors proposed a
way to generate synthetic datasets. The workings are detailed
in their Appendix C.1 which we reproduced. However, since
their code got published before we started running the
experiments we ended up using their implementation for
better comparability.

5.2 Authors’ code

The authors implemented their method with Pytorch 1.11.0
and torch-geometric 1.7.2. They divided their codebase into
subfolders containing independent implementations of their
method for each experiment. Therefore a lot of code is
repeated. When comparing each implementation we found
changes in the model architecture for different datasets. For
example, the use of the Laplacian was different as sometimes
the GCN norm (D + I)−1/2(A+ I)(D + I)−1/2 was used
instead of the ChebNet norm 2(I −D− 1

2AD− 1
2 )/λmax −

I , for which we confronted them and they argued the
impact on the spectral domain is minimal to a certain
extent. Also the datasets chameleon, citeseer, cora, cornell,
actor, pubmed, squirrel, texas, and wisconsin were included
alongside the code as well. For the heterophilic datasets
chameleon and squirrel we were unable to load the data they
provided because of an incompatibility issue with the PyG
version that we could not resolve after many reinstallation
attempts on different machines. Interestingly, after rewriting
the data loader using the datasets directly provided from a
newer PyG version, the observed performance of the authors’
code strongly contradicted the performance claimed in the
paper. The authors claim that they used the same dataset
version as [13], [14], and [15]. Since chameleon and squirrel
were shown to have data leakage in their test set[16], the
authors argued that the performance degradation may be
attributed to that, as newer versions of PyG (2.5.2) have
not resolved this issue. However, they referred us to using
the data that they provided which we couldn’t load nor
verify. They further pointed out that for their experiments, the
graphs of these two datasets were made undirected. We tried
to do the same, however the performance did not improve.
Either way, to further test their method on heterophilic
datasets, the authors of [16] proposed five new heterophilious
benchmarks. The results for those datasets are depicted in
Table 6.

5.3 Differences

After the authors published the final version of the paper
along with their code base we started comparing our
implementations which unveiled significant differences upon
which we contacted the authors to understand their choices
better. In the paper they claimed that γH

0 = γL
0 = γ0 but

used different initial values for γH
0 and γL

0 . Sometimes they
also set them as trainable parameters, for other datasets
they were fixed. Initially, we had them fixed which caused
detrimental dips in accuracy. Fixing them to different values
almost doubled the measured performance. Furthermore,

they used two different sets of parameters γ for the high and
low pass respectively instead of a shared set of γs, as the
paper seems to suggest. They argued that that changing the
initial values or having separate sets of γ does not affect the
theoretical aspect of their work since the high-pass and low-
pass properties are still ensured by the prefix sum and prefix
difference, and that all these scenarios boil down to a special
case of the algorithm described on the paper, which we agree
on. As long as each γi is non-negative the prefix sum ensures
a monotonic increase γH

i ≤ γH
i+1 and the prefix difference

ensures the monotonic decrease γL
i ≥ γL

i+1. Therefore the
filter properties are still satisfied. Also having two separate
sets of γ will only give the model more expressive power.

However, setting γ0 to some non-zero constant forces the
model to use high-frequency information as γH

1:K can only
increase. Similarly, for γL

1:K the model would need to learn
to very quickly decrease γ in order to ignore low-frequency
information. For example, forcing high-pass filters on very
homophilous datasets can hinder training as it adds noise to
the embedding. Likewise for highly heterophilious datasets,
biasing the model also to include low-frequency signals can
dilute the training progress. If the model wants to ignore
high- or low-frequency information it would need to adapt
α and β respectively which might be a difficult interaction to
learn.

Furthermore, the authors used different learning rates for
the linear layers compared to the convolution, α, and β.
Typically the linear layers had much smaller learning rates
compared to the other components. We adapted this training
scheme and optimized both learning rates.

In some of their convolution implementations, they
applied ReLU after computing the prefix difference to
enforce the positivity of γL

0:K , in others negative values were
possible. Adding a ReLU after the prefix difference was not
described in their paper even though it makes a lot of sense.
We would expect that if γH

i becomes very negative, the low-
pass filter could start including high-frequencies again. The
authors agreed with us and BernNet[17] also claimed that
negative filter values are considered well-defined. Therefore
it becomes difficult to determine whether a filter function
with both positive and negative values is a low-pass or high-
pass filter. But interestingly when observing γL on our runs,
the values never seemed to become negative. Just to be sure
we added the ReLU after commuting the prefix difference.

5.4 Datasets

For our experiments, all real-world datasets were obtained
by downloading them from Pytorch Geometric’s datasets
module and their features were normalized. In case the data
provided by the authors was loadable we used it to reproduce
their results. A short description of the datasets can be seen
in Table 1.

5.5 Hyperparameters

Since we have two implementations, our own and the later
published code from the authors, we evaluated two-fold.
Firstly, we reran the authors’ code with the run configuration
they provided in their codebase. Those hyperparameters were
obtained using grid search according to their Appendix F,
table 9-11. Results obtained with the same hyperparameters
with our implementation were not on par with their model.

Group id: 2 – Project id: PolyGCL
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Table 1. Datasets

Number of
nodes

Number of
edges

Number of
classes

CORA [18] 2, 708 5, 429 7

CITESEER [18] 3, 327 4, 732 6

PUBMED [18] 19, 717 44, 338 3

CORNELL [19] 195 298 5

TEXAS [19] 187 325 5

WISCONSIN

[19]
265 515 5

ACTOR [19] 7, 600 33, 316 5

CHAMELEON

[20]
2, 700 36, 101 5

SQUIRREL

[20]
5, 201 217, 073 5

ROMAN-
EMPIRE [21]

22, 662 32, 972 18

AMAZON-
RATINGS

[21]

24, 492 93, 050 5

MINESWEEPER
[21]

10, 000 39, 402 2

TOLOKERS
[21]

11, 758 519, 000 2

QUESTIONS
[21]

48, 921 153, 540 2

Since we have an additional embedding layer and actually
train the batch norm, which was, probably due to an
oversight, left not trainable in the original code, we decided
to run hyperparameter sweeps for our model for fair
comparison. The hyperparameter sweep configurations can
be found under sweep_configs in our repository. All
sweeps together ran about 96 hours.

5.6 Experimental setup

The experiments were run on machines equipped with an
Nvidia RTX 4070, an Nvidia RTX 3080 and an Nvidia RTX
3090, with 12, 10, and 24 GB of memory respectively. The
code has been developed in Python using the open-source
libraries PyTorch [22] and PyTorch Geometric [23]. The
code is available on GitHub.

5.7 Computational requirements

The computational requirements are summarized in Table
2 and Table 3. It is important to note that some
hyperparameters that affect training time and memory usage
used across the experiments are not consistent. The reported
values are collected from the best-performing models and we
refer to the hyperparameter choice for the specific runs to put
these values into perspective. The chosen hyperparameters
can be found in the GitHub repository.

6 Results
In the following section, we report empirical results on a
wide variety of datasets. To better visualise the quality of
the results (presented as accuracy or area under the receiver
operating characteristic curve), we devised a simple four-
coloring scheme, depicting in dark green results that are
better or have an error within 2, in light green results with an

error between 2 and 5, in light red errors between 5 and 10
and in dark red error higher than 10, of the respective metric.

Error ≥ 10 5 to 10 2 to 5 ≤ 2
Table 4. Coloring scheme to present the results according to
the error with respect to the claimed results.

6.1 Synthetic Dataset

In this section, we performed experiments on synthetic
datasets generated with the cSBM model [24], following
[15]. This model allows for the creation of graphs with a set
degree of homophily, determined by a parameter ϕ ∈ [−1, 1],
where a value of 1 indicates the highest degree of homophily
and −1 the highest degree of heterophily. Table 7 shows
the accuracy claimed in the authors’ paper, compared to
the results obtained by running the authors’ code with their
chosen hyperparameters and the results obtained by running
our code with our hyperparameters. We can see that apart
from the graph generated with ϕ = −1, we obtained the
expected results within a reasonable margin for the authors’
code.

In Figure 1 we report the learned values of α, the value that
controls the importance of the low pass encoder’s view, as the
level of homophily changes for the synthetic datasets. For
this experiment, α was kept in the [0, 1] range, and β was set
to 1− α, to ensure α+ β = 1. We can see a clear correlation
between the value of α and the level of homophily, since
as ϕ increases, so does α. As ϕ approaches 0, the structural
information becomes useless. This is reflected in the values
of α and β staying around 0.5, representing equal importance
of the low and high pass filter view. In this setting, the
performance is poor, which is expected and also reflected in
supervised settings [15].

In Figure 2 we report the learned values of γH
i , γL

i , wH
k

and wL
k for the PolyCGL convolution, using K = 10 and

α+ β = 1, α ≥ 0, β ≥ 0. On the horizontal axis, we have
the training step and on the vertical axes a histogram showing
the distribution of the K values. When ϕ = 1, indicates a
high homophility, we can clearly note that the high pass filter
is understood to not be useful by the learning procedure since
all weights are pushed towards 0. In the opposite setting,
when the graph presents a high degree of heterophility with
ϕ set to −1, we can see that while a low pass contribution is
still present, the contribution of the high pass view in clear,
depicted by the wide range of learned γH

i that consecutively
define wH

k . While the low pass contribution is still present,
from Figure 1 we however know that for ϕ = −1 the the
low pass contribution is dampened by the learned value of α
being low and close to 0, which in turns means that the model
learned to use high pass filters when the graph is heterophilic.

In Table 7 we also report the results we obtained with our
own implementation of PolyGCL. For ϕ = −0.25, ϕ = 0,
and ϕ = 0.25, we note the highest difference in performance,
but we still are within 5 accuracy percentage points away
from the claimed ones. The reproduction with ϕ = −1 was
problematic with the original code, however, with our own
implementation, we obtained a very similar result to the
claimed one. All other results are in line with the expected
one. We can therefore claim that, overall, the reproducibility
on synthetic data was successful and PolyGCL proved to be
working well.

Group id: 2 – Project id: PolyGCL
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Table 2. Computational requirements for the various experiments. Superscripts 1 and 2 represent the statistics for the RTX 4070
and RTX 3090 respectively.

CORA2 CITESEER2 PUBMED2 CORNELL2 TEXAS2 WISCONSIN2 ACTOR2 CHAMELEON1 SQUIRREL1

Memory
(GB)

∼ 24 ∼ 18 ∼ 24 ∼ 22 ∼ 11 ∼ 20 ∼ 24 ∼ 12 ∼ 12

GPU Time 31m03s 2m28s 140m36s 1m43s 50s 1m14s 98m49s 1m35s 20m29s

Table 3. Computational requirements for the various experiments on the heterophilic graphs and synthetic graphs. Superscripts 1,
2, and 3 represent the statistic for the RTX 4070, RTX 3090 and RTX 3080 respectively. Since the cSBM datasets are so similar
they will be reported in a single column.

Methods ROMAN-EMPIRE2 AMAZON-
RATINGS2

MINESWEEPER1 TOLOKERS2 QUESTIONS2 CSBM3

Memory (GB) ∼ 24 ∼ 10 ∼ 12 ∼ 19 ∼ 18 ∼ 10

GPU Time 9m17s 4m34s 1m50s 14m54s 5m38s ∼ 25m

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

φ

0.0

0.2

0.4

0.6

0.8

1.0

α

Figure 1. Values of α, which control the importance of the low
pass encoder’s view, as the level of homophily changes for
graph coming from the cSBM model.

6.2 Real-world Dataset

In Table 5 we report the results of experiments on real-
world datasets. The results are within the expectation of
what was claimed for the homophilic Planetoid datasets
(Cora, Citeseer, and Pubmed) [18]. We also performed tests
on real-world heterophilic data. The datasets from WebKB
(Cornell, Texas, and Wisconsin) proved to be more difficult
than originally claimed. When using the authors’ code
with their chosen hyperparameters the results are almost
ten percentage points worse than what is claimed in the
paper. This poor showing is further reflected in the actor
dataset where a similar disparity can be found. Though our
reproduction of the PolyGCL concept seems to perform more
in line with what we would expect; Here all results fall
within five percentage points of the claimed accuracy. The
largest disparity, however, can be found when analyzing the
WikipediaNetwork datasets (Chameleon and Squirrel). Here
we consistently see a difference between claimed results and
measured results larger than 10 percentage points, both with
the authors’ model and ours. We speculate that the cause
of this divergence could be a data leakage in the version of
these datasets used by the authors [16]. We do, however, see
a significant improvement in our model when compared to
the original authors.

In Table 6, we can see further testing on real-world
heterophilic datasets. For these datasets the results are all

within an expected range of what was claimed, with both
our model and the authors. This result is expected and
reinforces the original authors’ observation that PolyGCL,
when compared to other methods, tends to perform better on
heterophilic data.

7 Discussion and conclusion
Overall, PolyGCL proved to be an effective model for
learning meaningful node representations in an unsupervised
setting for both heterophilic and homophilic graph datasets.
It introduces a novel approach to graph contrastive
learning, built upon an encoder that produces representations
considering two spectral views based on learnable low-
pass and high-pass filters. Furthermore, the contribution of
each view is weighted by another learnable parameter. We
showed the importance of the low-pass and high-pass views
on synthetic datasets, where the degree of homophily on
the graphs can be controlled. Additionally, we showed that
these views are learned correctly and the claimed accuracy
can be reproduced with a simple linear classification as a
downstream task that utilizes the learned representations.
We further proved that on real-world datasets, it is for the
most part possible to achieve the claimed results with the
same simple linear classifier trained on the representation
produced by PolyGCL. There were however two very
problematic datasets that did not produce the expected
results when PolyGCL was applied to them. Regarding
this inconsistency, we were unable to identify a definitive
explanation.

For the reproduction itself, we noted that by simply
following the explanations of the paper, the model can
underperform when compared to the expected results. Small
but important details that were only clear when the code
was open-sourced made an important difference in the
effectiveness of the method.

One notable concern with the proposed method is the
reliance on supervised metrics, such as the final accuracy of
a linear classifier trained on the learned representations, to
determine optimal hyperparameters of the encoder. In our
experience, despite the model being designed to function
in an unsupervised manner, the sensitivity of the model to
hyperparameter settings necessitated the use of labeled data
for fine-tuning of these parameters and reproduction the
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(a) Values of γL
i for ϕ = 1. (b) Values γH

i for ϕ = 1. (c) Values of wL
k for ϕ = 1. (d) Values of wH

k for ϕ = 1.

(e) Values of γL
i for ϕ = 0. (f) Values γH

i for ϕ = 0. (g) Values of wL
k for ϕ = 0. (h) Values of wH

k for ϕ = 0.

(i) Values of γL
i for ϕ = −1. (j) Values γH

i for ϕ = −1. (k) Values of wL
k for ϕ = −1. (l) Values of wH

k for ϕ = −1.

Figure 2. Evolution of the values of γi and wk for both the high pass and low pass view of the encoder.

Table 5. Results for homophilic and heterophilic datasets. The first row shows the results claimed in the original paper, then the
results obtained by running the experiments with the publicly available code, and lastly the results obtained with our reproduction.

Methods CORA CITESEER PUBMED CORNELL∗ TEXAS∗ WISCONSIN∗ ACTOR CHAMELEON SQUIRREL

Claimed 87.57±0.62 79.81±0.85 87.15±0.27 82.62±3.11 88.03±1.80 85.50±1.88 41.15±0.88 71.62±0.96 56.49±0.72

Reproduced 86.16±0.84 79.24±0.64 86.75±0.26 76.81±3.62 78.36±3.28 82.75±2.38 31.64±0.68 33.24±1.25 32.98±0.71

Ours 85.55±0.62 76.49±0.98 83.73±0.26 79.36±3.41 85.08±1.48 86.13±2.00 36.49±0.61 47.46±0.94 34.68±0.77

Table 6. Results for heterophilic datasets. The first row shows the results claimed in the original paper, then the results obtained by
running the experiments with the publicly available code, and lastly the results obtained with our reproduction.

Methods ROMAN-EMPIRE AMAZON-RATINGS MINESWEEPER (AUC) TOLOKERS (AUC) QUESTIONS (AUC)

Claimed 72.97±0.25 44.29±0.43 86.11±0.43 83.73±0.53 75.33±0.67

Reproduced 72.44±0.30 43.83±0.28 86.12±0.43 83.70±0.61 74.87±0.76

Ours 68.36±0.41 48.84±0.29 85.03±0.45 83.80±0.44 68.11±0.54

Table 7. Results for synthetic cSBM datasets. These datasets are constructed with a varying degree of homophily from very
heterophilic to very homophilic. The first row shows the results claimed in the original paper, then the results obtained by running
the experiments with the publicly available code, and lastly the results obtained with our reproduction.

ϕ −1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

Claimed 98.84±0.17 94.23±0.31 90.82±0.50 75.43±0.68 66.51±0.69 69.43±0.65 88.22±0.72 98.09±0.29 99.29±0.23

Reproduced 88.99±0.45 93.49±0.29 90.41±0.67 74.94±0.39 67.25±0.47 70.17±0.57 88.39±0.40 97.68±0.25 98.64±0.18

Ours 98.34±0.31 98.48±0.15 91.18±0.49 70.80±0.80 63.99±0.67 64.99±0.63 91.06±0.32 97.70±0.27 99.22±0.15

claimed results. Looking at the unsupervised loss alone did
not always result in the best model choice. This introduces a
contradiction, as in theory the model is supposed to learn in
an unsupervised way.
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[4] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
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Zach DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library, 2019.

[23] Matthias Fey and Jan Eric Lenssen. Fast graph
representation learning with pytorch geometric, 2019.

[24] Yash Deshpande, Andrea Montanari, Elchanan Mossel,
and Subhabrata Sen. Contextual stochastic block
models, 2018.

Group id: 2 – Project id: PolyGCL

https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1606.09375
http://arxiv.org/abs/1606.09375
http://dx.doi.org/10.1109/MSP.2012.2235192
http://dx.doi.org/10.1109/MSP.2012.2235192
https://openreview.net/forum?id=rklz9iAcKQ
https://openreview.net/forum?id=rklz9iAcKQ
http://dx.doi.org/10.1109/TNNLS.2022.3190922
http://dx.doi.org/10.1109/TNNLS.2022.3190922
https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=S1e2agrFvS
http://arxiv.org/abs/1909.13021
http://arxiv.org/abs/1909.13021

	Introduction
	Preliminary
	Related works
	Methodology
	Implementation
	Reproduction
	Authors' code
	Differences
	Datasets
	Hyperparameters
	Experimental setup
	Computational requirements

	Results
	Synthetic Dataset
	Real-world Dataset

	Discussion and conclusion
	Acknowledgments

