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I. INTRODUCTION

In this project, we implemented a Markov Localization
algorithm in a simulated environment. This algorithm is used
to probabilistically estimate the pose of a robot that is aware
of its own environment but it is unaware of its current pose.
For example, if the robot is re-positioned in its environment, it
needs to understand its new pose. Markov localization explores
a discrete representation of each possible pose of the robot
within its environment. A probability distribution over these
possible poses is kept track of and updated iteratively, given a
movement model and sensor measurements. This distribution
represents the likelihood that the robot is in a given pose.
The state space, hence the space of all poses, needs to be
properly discretized. Such a model allows for uncertainty to
be introduced both in the sensor measurements and in the

movement models, which makes it feasible to be applied
in real world scenarios. In the last step, we implemented
a version that uses a Monte Carlo Localization (or Particle
Filter Localization) to overcome the downside of Markov
Localisation that requires every possible pose to be associated
with a probability value which has to be updated at each step.

II. BACKGROUND

A. Markov Localization

Markov Localization keeps track of a discretized proba-
bility distribution over the possible robot poses p(l), where
l is a pose. A robot is equipped with sensors that provide
measurements i with a probability conditioned on a pose l
modeled as p(i|l). This model allows to introduce uncertainty
in the measurements, for example by modeling it as a normal
distribution centered at the true measurement that would be
produced if the robot was in pose l. Additionally, the robot
has a movement model p(lt|l

′

t−1, ot) that models a distribution
over poses lt at time t given the old poses l

′

t−1 and a command
o issued to the robot.

The beliefs about the poses are updated by iterating two
computations that we can call ACT and SEE.
ACT uses a convolution over the old belief and the move-

ment model for the issued command and can be expressed as
follows:

p(lt|ot) =
∫

p(lt|l
′

t−1, ot)p(l
′

t−1)dl
′

t−1

SEE uses the update defined by the posterior distribution
p(l|i) given the likelihood of a sensor measurement given
a pose and a prior on the pose, which is the current belief
for the poses. Everything must be properly normalized by
the evidence p(i) which however is the same when updating
any pose belief and can therefore be omitted during the
computations. After all pose beliefs are updated, the values
are normalized so that their sum is 1. The computations can
be expressed as follows:

p(l|i) = p(i|l)p(l)
p(i)

∝ p(i|l)p(l)

B. Monte Carlo Localization

A clear downside of Markov Localization is the need of
keeping track and updating a value for each possible pose at
each time step. As the environment size grows quadratically,
this task becomes unfeasible. A solution to this problem is
the use of randomized sampling or particle filters, which



lead to the Monte Carlo approach for localization. In this
approach, the belief state is approximated by keeping track of
a subsample of all possible poses/states. The sampling process
is weighted by the probability density function so that more
samples are sampled around peaks of probabilities. Initially, N
samples are initialized randomly on a random pose l associated
with a uniform probability p(l) = 1

N . Then the following
iteration is performed:

• For each sensor reading i (SEE): every sample has its
probability updated as p(l) = p(i|l)p(l) and normalized
so that the total sums up to 1.

• For each issued command o (ACT): For N times, a
sample l′ is sampled from the previous sample set with
a likelihood given by p(l′) and a new sample at pose l is
generated according to p(l|l′, o). Every generated sample
has a probability value of p = 1

N .
A possible improvement is to draw some random samples
at random poses to avoid the case in which the robot is
completely lost.

III. PROJECT STRUCTURE

The project assumes a grid world structure to simplify the
setup and allow for easily interpretable visual results. The
basic robot is positioned in a tile and its center of mass is
placed in the center of a tile. There are 8 possible angles θ that
the robot can take as an orientation. The allowed movements
are forward and backward according to the current orientation.
This means that the robot can move along an axis but also
diagonally if its orientation is diagonal. The robot is equipped
with a laser sensor of variable perceptive range. The laser
interacts with the surrounding environment and whenever it
intersects with an obstacle, it returns a measurement that can
either be perfect or subject to noise. The project is structured
so that it is possible to equip the robot with additional sensors
or different kinds of sensors easily. The world is rectangular
and polygonal objects (obstacles) can be placed around the
world. The polygons can take any form but as soon as any
part of the polygon occupies part of a tile, the whole tile is
considered occupied and can not be walked on.

A. Code and external libraries

The whole code base is written in Python. For computations
and matrices handling we used Numpy. For convolutions and
sampling from probability distributions, we used SciPy. For
the GUI we used PyGlet which is a library for Python that
provides an API for the creation of games and applications
that require a GUI. PyGlet has the advantage of having no
external dependencies and is straightforward to use for simple
interfaces. Behind the scenes, every object is backed up by
a geometric representation. This is done with the help of
Shapely, which is yet another Python library that handles the
manipulation and analysis of planar geometric objects. We
mainly used this library to efficiently compute intersections
between objects, such as a laser sensor represented by a
line segment and an obstacle represented by a polygon. A

requirements file containing the relevant packages will be
available together with the code.

B. Code Architecture

To adhere to the open for extension, closed for modification
principle we aimed to make the code as modular as possible.
To achieve this we used the Model View Controller pattern
accompanied by the Observer pattern. This allowed us to
reuse many parts of the code, for example, the continuous and
discrete robots use the same View. Similarly, we introduced
abstract classes to unify and abstract most implementation
details. This enables us to implement new sensors, movement
models, or environments without having to change existing
code in any of the other components as different components
only call abstract methods. All global parameters are collected
in one file called definitions.py that can be used to
select between different components and hyperparameters.

C. Movement Model

The movement model for the robot can either be determin-
istic or subject to uncertainty.

1) Deterministic Movement Model: In the case of
a deterministic movement model, we represent the
movement as a simple matrix M. Such a matrix is
used as a kernel for a convolution that is applied to
the current belief and is appropriately rotated according
to the possible orientations of the robot obtaining
Mup,Mup-right,Mright,Mdown-right,Mdown,Mdown-left,Mleft
and Mup-left.

Mup =

0 1 0
0 0 0
0 0 0

 ,Mup-right =

0 0 1
0 0 0
0 0 0

 , . . .

All together these matrices can be stacked together creating
a three-dimensional kernel that can be convolved over the
three-dimensional matrix that contains the robot’s belief. The
convolution is however applied on each of the third dimensions
independently. For each possible orientation θ the convolution
is therefore defined as:

Ba,b,θ =

w∑
i=0

h∑
j=0

Mi,j,θ ·Bi+a,j+b,θ

where B is the three-dimensional matrix containing the current
belief and M is the three-dimensional kernel. This formula
omits the padding for simplicity.

2) Movement Model subject to uncertainty: An uncertain
movement model is defined as the previous one, however, it is
further parameterized by a vector of probabilities p1, p2, and
p3. These three values represent the probability of executing
the issued action, executing no action, and executing the
opposite action, respectively. In such a setting the movement
can be represented as follows:

Mup =

0 p1 0
0 p2 0
0 p3 0

 such that
3∑

i=1

pi = 1



The other matrices are defined analogously. This setting can
be scaled to more complicated movement models, for example
by increasing the kernel size, keeping the same overall logic.

D. Kidnapping

A rather unconventional way to include uncertainty is to
reposition the robot arbitrarily without telling him. Also,
represent a stress test for our implementation. Issues that we
encountered were that some probabilities were actually zero
because of floating point imprecision. We fixed that by adding
2e− 16 to each belief after normalizing to make sure that no
probability reaches zero. After making this required change the
robot successfully recovered after the kidnapping. Through a
mouse click the robot can be repositioned to any free tile and
we successfully tested it in certain, uncertain, and Monte Carlo
settings.

E. Sensing Model

Analogously to the movement model, the sensing model
can be either deterministic or subject to uncertainty. The
sensing model is defined as p(i|l) in the SEE step, hence the
probability of getting a sensing input i given a pose l.

1) Deterministic Sensing Model: In the case of a determin-
istic sensing model, this probabilities are defined as:

p(i|l) =

{
1 if |i− i∗| ≤ ϵ

0 else

for i∗ the true measurement that a perfect sensor would
measure at pose l and a small ϵ to allow for floating point
numerical imprecision.

2) Uncertain Sensing Model: The uncertain sensing model
was defined instead as Gaussian distributions centered at the
true measurement i∗ and with a certain variance σ2 which was
exposed as a hyperparameter:

p(i|l) ∼ N(i∗, σ2)

F. Probability Visualization

The Monte Carlo approach keeps track of a multidimen-
sional matrix that contains probabilities for each possible
robot’s pose. Recall that in our case the robot has three degrees
of freedom, hence (x, y, θ) which represents a position in the
plane and a certain orientation. This led to the difficulty in de-
ciding how to represent those probabilities in two dimensions
(our GUI). The obvious solution is to somehow aggregate
the probabilities along the orientation dimension. The easiest
approach is to simply add them up along that dimension at
the cost of losing the information about the orientation. This
means that if a pose, represented by a tile, has a certain
probability, we can’t tell what orientation is contributing to that
probability. A simple approach is to represent the probabilities
by the tile color’s opacity (the alpha channel) so that highly
probable tiles have a more opaque color and lesser probable
tiles have a more transparent color. Initially, we applied a
linear scaling from probabilities p ∈ [0, 1] to opacity intensities
α ∈ [0, 255]. This seemed to work well until we noticed that

sometimes the tile onto which the robot was residing seemed
to have a 0 probability, just to then recover later as time passed.
Instead of being a bug, we realized that this issue was simply
caused by our eye not being able to pick up the difference
between opacity values below a certain range. For this reason,
we replaced the linear scaling by a gamma correction to give
a bigger range of opacities to small probabilities. Figure 1
shows some examples of gamma correction for a given choice
of γ. In our case, the x-axis represents the probability and the
y-axis represents opacity.
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Fig. 1: Gamma correction examples.

After several trials, we realized that a good choice was
γ = 0.1 in order to obtain a nice visualization. In section V
(Results) we display some examples of those visualizations. A
better approach would be to have γ be the result of a function
of w and h, the width and height of the environment. This is
because the larger the world, the smaller the probabilities will
be as they are spread over a larger area.

Another idea was to use an HSV color space to allow the
various probabilities obtained from the different orientations to
be differentiated. Figure 2 shows an HSV color space. This 3-
dimensional space is an alternative representation of the RGB
color model. The idea was to map each of the possible robot’s
orientations to a certain color, hence a hue value. Then the
saturation value could have been used proportionally to the
probability. Mixing colors according to the various orientations
results in some color that is not interpretable. Therefore only
the most likely orientation could have been used and its color
displayed. In the end, we opted not to use this approach
because the grid’s color would have still looked too hard to
interpret due to the presence of many colors. After all, it is
still hard for humans to make sense of and compare colors.
Also, the environment was not colored smoothly as the most
likely orientation frequently changed from tile to tile making
it a mosaic pattern that was impossible to interpret for us.

IV. CONTINUOUS WORLD REPRESENTATION

Transitioning from a grid-based to a continuous repre-
sentation of the environment introduces new challenges and
complexities in our localization efforts.

Increased computational complexity: In a continuous en-
vironment, the state space is infinite, which makes exact
computation and representation impossible. As a result, we



Fig. 2: HSV color space. Source:
wikipedia.org/wiki/HSL and HSV

often need to use approximate methods such as particle filters,
which increased computational complexity.

Handling Sensor Noise: The continuous representation of
the world necessitates meticulous management of sensor noise.
Given that the robot’s position can be at any point within this
continuous environment, minor inaccuracies in sensor readings
can potentially lead to significant deviations in the estimated
position, thereby compromising the localization process.

Data Association Challenges: In a continuous world, as-
sociating sensor observations with corresponding landmarks
or features in the environment presents additional difficulties.
This will be discussed further in the Monte Carlo Localization
as it is highly relevant to the model.

A. Monte Carlo Approach

We have implemented Monte Carlo Localization, also
known as Particle Filter Localization, as a localization model
for a continuous environment. Monte Carlo Localization is
a method that overcomes the limitations of grid-based lo-
calization by using a set of random samples or ”particles”
to represent the robot’s position and orientation within a
continuous space. Each particle signifies a potential state of
the robot, with the collective distribution of particles forming
a probabilistic belief map. Given a known map, M , the
goal of Monte Carlo Localization is to compute the posterior
distribution of the robot’s pose, lt, at time t, given the history
of control signals, o1...ot and sensor measurements, i1...it.

P (lt|o1:t, i1:t,M)

This posterior distribution is approximated using a set of N
particles. The algorithm begins by dispersing these particles
randomly throughout the environment. Each particle represents
a hypothesis about the robot’s pose, lt, i.e. the position (x, y
coordinates) and orientation (one of eight directions). Initial
weights, wt, are assigned to the particles in a uniform fashion
as the exact location of the robot is not known at the outset.

As the robot moves, the particles are displaced according
to a motion model which mimics the robot’s movement.
The motion model takes into account the control inputs and
inherent uncertainties such as noise in the robot’s movement.
This step introduces a predicted belief about the robot’s pose
before incorporating sensor measurements. The control signals
are incorporated through the motion model:

lt = g(ot, lt−1)

Where g is the function that applies the control signals to
the previous pose.

Upon receiving sensor measurements, the weights of the
particles are updated according to a measurement model. The
model evaluates how likely the robot would have perceived the
current sensor readings if it were in the state represented by
each particle. Particles that align closely with the sensor data
receive higher weights. The weight of a particle is computed
based on the measurement model:

wt = P (it|lt,M)

This forms the basis for resampling in the next phase.
Particles are resampled proportional to their weights. This

results in the multiplication of particles with higher weights
(those that better represent the robot’s state) and the elimina-
tion of particles with lower weights. In mathematical terms, if
we denote the new particle set by L′

t and the old set by Lt,
this can be written as:

L′
t = P (Lt|wt)

The prediction-update-resampling loop repeats with every
new motion and sensor measurement, gradually converging to
a set of particles that closely approximates the true pose of
the robot.

B. Perception Aliasing

Perception aliasing is a significant challenge in localiza-
tion, particularly in environments with similar or symmetric
features. This phenomenon arises when different places in
the world appear identical or nearly identical to the robot’s
sensors. Perception aliasing can lead to multiple peaks in the
posterior probability distribution of the robot’s pose, hindering
effective localization.

To mitigate the issue of perception aliasing and enhance the
robustness of the localization, we incorporate two strategies:
jittering and effective sample size thresholding.

Jittering is a technique that adds random noise to the
particles’ state during the resampling phase of Monte Carlo
Localization. The introduction of noise, or jittering, diversifies
the pool of particles, ensuring that the range of hypotheses
about the robot’s state remains broad and resilient to aliasing
effects. Jittering can be formally described as:

l′t = lt +N(0, σ)

where N(0, σ) is a zero-mean Gaussian noise with standard
deviation σ, and l′t represents the jittered state of the particle.

Effective sample size (ESS) thresholding is a measure of
the number of particles that significantly contribute to the rep-
resentation of the robot’s pose distribution. When perception
aliasing causes particles to concentrate around a few hypothe-
ses, the ESS may decrease significantly. By monitoring the
ESS, we can preemptively identify situations where perception



(a) Belief after 1 step. (b) Belief after a few steps.

(c) Belief after more steps.
(d) Belief after a few steps
and more rotations

Fig. 3: Three stages of the robot’s pose belief in a simple
environment with certain sensing and certain movements.

aliasing is likely to cause localization failure. When ESS falls
below a certain threshold, we can trigger a resampling of the
particles. This can be represented mathematically as:

ESS =
1∑

j = 1N (wt)2

where wt is the weight of the particle.
If ESS < threshold, then we resample.

V. RESULTS

In this section, we will go through some of the obtained
results by showing a few examples of environments and
settings. To begin with, in Figure 3 we can see three stages of
the robot’s pose belief in a simple environment with certain
movements and certain sensing. Because the environment is
symmetric and it is only equipped with a single laser sensor,
the robot can not figure out a single position but rather has 4
equally likely poses. In Figure 4 we show the results of a robot
in the same environment but with an uncertain sensing and
movement model. The overall probabilities are more spread
because of those uncertainties. However, the robot is able to
locate 4 equally likely poses if it starts rotating in place. With
these rotating actions, the sensing model will slowly make the
probabilities converge to 4 single tiles. We can note that having
certain movements and certain sensing makes the probabilities
converge extremely quickly. The only issue is the symmetry
of the environment which makes it impossible to ultimately
localize the robot.

Figure 5 shows a few steps in a more complex environ-
ment with certain sensing and movements. Despite the more
complex environment the robot quickly localizes itself after a

(a) Belief after a few steps. (b) Belief after more steps.

(c) Belief after rotating in
place for some time.

Fig. 4: Three stages of the robot’s pose belief in a simple
environment with uncertainties.

few steps. Using certain sensing and movements is not very
interesting and it should mostly be considered as proof that the
code is working correctly because of the easily interpretable
results.

We now move on to more interesting results considering
uncertainties in the same more complex environment. Figure
6 shows a few stages of the localization. We can see that
after a few steps, especially due to the high uncertainty in the
sensing, the probabilities did not change much from a uniform
distribution. It then takes a few more steps to obtain a bunch
of clouds of probable poses.

In the end, after even more steps the probabilities converge
to a single cloud, and by performing rotations in place the
cloud shrinks in size and slowly converges to the tiles just
around the robot. Given more time and more rotations, the
probabilities will all converge to the correct tile. Because of
the uncertain movements, even after the probabilities fully
converge to a single pose, when the robot starts to move around
again, the cloud of probabilities will again grow in size as the
uncertainty spreads probabilities to surrounding tiles. In Figure
7 we show yet another example of a few localization stages in
a highly symmetrical environment. In the beginning, every tile
is equally likely. After a few movements, the robot can be in
any room, and after more steps, the probabilities converged to
two possible rooms. With enough time, the belief will converge
to the correct room because each of them contains a unique
polygon which results in unique true measurements.



(a) Belief after a few steps. (b) Belief after more steps.

(c) Belief converged after
another rotation.

(d) Belief after sensing the
brick wall.

Fig. 5: Four stages of the robot’s pose belief in a more complex
environment with certain sensing and movement.

(a) Initial setup with a uniform belief.

(b) Belief after a few moves.

(c) Belief after further moves

Fig. 7: Three stages of the robot’s pose belief at three time
steps in a highly symmetric environment.

(a) Belief after the initial
few steps. (b) Belief after more steps.

(c) Belief after further steps.

(d) Belief after many steps
and rotating in place for
some time.

Fig. 6: Four stages of the robot’s pose belief in a more complex
environment with uncertain sensing and movement.

Figure 8 shows an example of the Monte Carlo Localization
and the particles at different stages of the simulation.

Fig. 9: An example of perception aliasing for Monte Carlo
Localization.

In 9 we see an example of perception aliasing in a highly
symmetric environment.



(a) Initial particles around
the environment.

(b) Particles about to con-
verge.

(c) Particles converged

Fig. 8: Three stages of Monte Carlo Localization

VI. CONCLUSIONS

In this project, we implemented two interesting approaches
to the localization of a robot in a known environment. The
first one is Markov Localization and the second one is Monte
Carlo Localization (or Particle Filter). The first approach keeps
track of a probability value for each possible pose that the
robot can take. Such an approach is easily interpretable but
quickly becomes prohibitive for large environments or large
state spaces. The second approach overcomes this issue by
only keeping track of a fixed-sized subsample of possible
poses. This approach allows the state space to be contin-
uous and in general requires less memory to execute. The
tradeoff is a potentially slower convergence. The result we
obtained is an application with an intuitive GUI that lets
the user play around with different parameters settings and
environments to visualize the strengths and weaknesses of
these localization algorithms. This application can be used
for educational purposes. Overall we are very happy about
the results we obtained, especially since we managed to stick
to our expectations and even added a few extra new features
during the process.

VII. LIMITATIONS AND OUTLOOK

In this section, we want to discuss the limitations of our
implementation and future changes that could be made to
further explore and understand the localization paradigm. The

main constraint of our system is the limited number of rota-
tions. First of all, this makes the set of possible measurements
quite restricted and positions tend to be similar to each other
due to the perception resolution of each position. There are
only eight distances per position which makes it impossible
to perceive for example unique objects further away as the
laser can only hit them in one orientation. However, if they
are unique enough the measurement might be unique which
immediately solves the localization problem. This issue is
solved by introducing uncertainty though. Another limitation is
that only one action at a time can be taken and the robot is not
able to move forward while turning. A possible improvement
would therefore be to implement a better kinematics model
such as differentiable drive kinematics. We made the choice
of very simple kinematics due to time restrictions and a simple
model allowed us to debug the code better. Also it simplified
the visualizations a lot which was beneficial for us.

Besides continuous rotation, we would have been keen to
explore different sorts and numbers of sensors. Just to name
a few, it would have been interesting to include bumper
sensors or all-or-nothing sensors that only signal if there is
something within a given distance or not. Another possibility
would have been to add a landmark sensor fixed at a certain
location, that keeps sending distance measurements to the
robot. Additionally, it would have been interesting to equip
the robot with multiple lasers. The way our code is structured
should allow this modification to be easily implemented.


